Proposal for a bachelor ’ s thesis Equational reasoning modulo tuples
نویسنده
چکیده
Prerequisites • Good skills in functional programming (e.g., from the FMFP course) • Knowledge about logic and the λ-calculus (e.g., from the FMFP course)
منابع مشابه
Integrating Theories into Inference Systems
The axiomatization of arithmetical properties in theorem proving creates many straightforward inference steps. In analyzing mathematical proofs with the CERES (Cut-Elimination by Resolution) system, it is convenient to hide these inferences. The central topic of the thesis is the extension of the CERES method to allow reasoning modulo equational theories. For this, the inference systems of Sequ...
متن کاملRewriting Context-free Families of String Diagrams
String diagrams provide a convenient graphical framework which may be used for equational reasoning about morphisms of monoidal categories. However, unlike term rewriting, which is the standard way of reasoning about the morphisms of monoidal categories, rewriting string diagrams results in shorter equational proofs, because the string diagrammatic representation allows us to formally establish...
متن کاملSound and Complete Equational Reasoning over Comodels
Comodels of Lawvere theories, i.e. models in Set , model state spaces with algebraic access operations. Standard equational reasoning is known to be sound but incomplete for comodels. We give two sound and complete calculi for equational reasoning over comodels: an inductive calculus for equality-on-the-nose, and a coinductive/inductive calculus for equality modulo bisimulation which captures b...
متن کاملNominal Lawvere Theories: A category theoretic account of equational theories with names
Names, or object-level variables, are a ubiquitous feature in programming languages and other computational applications. Reasoning with names, and related constructs like binding and freshness, often poses conceptual and technical challenges. Nominal Equational Logic (NEL) is a logic for reasoning about equations in the presence of freshness side conditions. This paper gives a category theoret...
متن کاملUnification and Anti-unification modulo Equational Theories
Automated reasoning modulo an equational theory E is a fundamental technique in many applications. If E can be split as a disjoint union R ∪ Ax in such a way that R is a set of rewrite rules that are confluent, terminating, sort-decreasing, and coherent modulo a set of equational axioms Ax, it is well-known that narrowing with R modulo Ax provides a complete E-unification algorithm. However, na...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015